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1. Introduction

J. Hashimoto [3] developed a theory of lattice ideals making effort to evolve this
algebraic theory like that of rings. Latter G. Gratzer and E. T. Schmidit [2] have
studied on ideal theory for latices. In 1970, M. Mandelker [6] studied relative anni-
hilators and characterized distributive lattices with the help of these annihilators.

On the other side, L. A. Zadeh [12] mathematically formulated the fuzzy subset
concept. A. Rosenfeld has developed the concept of fuzzy subgroup [8], W. J. Liu
initiated the study of fuzzy subrings, and fuzzy ideals of a ring [5]. B. Yuan and W.
Wu [11] introduced the notion of fuzzy ideals and fuzzy congruences of distributive
lattices. Latter, U. M. Swamy and D. V. Raju studied properties of fuzzy ideals and
congruences of lattices [10]. In recent time, H. K. Saika and M. C. Kalita studied
on annihilator of fuzzy subsets of modules [9].

In this paper, we introduce the notion of fuzzy annihilator ideals in distributive
lattices and study basic properties of fuzzy annihilators. It is proved that the set of
all fuzzy annihilator ideals of a distributive lattice L forms a complete Boolean al-
gebra. The concept of fuzzy annihilator preserving homomorphism in a distributive
lattice also presented in this paper. A sufficient condition for a homomorphism to
be fuzzy annihilator preserving is derived. In addition, we prove that the image and
pre-image of fuzzy annihilator ideals are also fuzzy annihilator ideals.
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2. Preliminaries

Throughout this paper L stands for the distributive lattice with least element 0
unless it is specified. We refer to G. Birkhoff [1] for the elementary properties of
lattices.

Remember that, for any set A, a function µ : A → ([0, 1],∧,∨) is called a fuzzy
subset of A, where [0, 1] is a unit interval, α∧β = min(α, β) and α∨β = max(α, β)
for all α, β ∈ [0, 1].

Definition 2.1 ([8]). Let µ and θ be fuzzy subsets of a set A. Define the fuzzy
subsets µ ∪ θ and µ ∩ θ of A as follows: for each x ∈ A,

(µ ∪ θ)(x) = µ(x) ∨ θ(x) and (µ ∩ θ)(x) = µ(x) ∧ θ(x).

Then µ ∪ θ and µ ∩ θ are called the union and intersection of µ and θ, respectively.

For any collection, {µi : i ∈ I} of fuzzy subsets of X, where I is a nonempty index
set, the least upper bound

⋃
i∈I µi and the greatest lower bound

⋂
i∈I µi of the µi’s

are given by for each x ∈ X,

(
⋃
i∈I µi)(x) =

∨
i∈I µi(x) and (

⋂
i∈I µi)(x) =

∧
i∈I µi(x),

respectively.
We define the binary operations ”∨” and ”∧” on the set of all fuzzy subsets of L

as:

(µ ∨ θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∨ z = x} and
(µ ∧ θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∧ z = x}.

If µ and θ are fuzzy ideals of L, then µ∧θ = µ∩θ and µ∨θ is a fuzzy ideal generated
by µ ∪ θ.

For each t ∈ [0, 1], the set

µt = {x ∈ A : µ(x) ≥ t}
is called the level subset of µ at t [12].

Note that a fuzzy subset µ of L is nonempty if there exists x ∈ L such that
µ(x) 6= 0.

Definition 2.2. [8] Let f be a function from X into Y ; µ be a fuzzy subset of X;
and θ be a fuzzy subset of Y . The image of µ under f , denoted by f(µ), is a fuzzy
subset of Y and

f(µ)(y) =

{
Sup{µ(x) : x ∈ f−1(y)} , if f−1(y) 6= φ

0, otherwise
,

where y ∈ Y . The preimage of θ under f , symbolized by f−1(θ), is a fuzzy subset
of X and

f−1(θ)(x) = θ(f(x)) for all x ∈ X.

Theorem 2.3 ([7]). Let f be a function from X into Y . Then the following asser-
tions hold.

(1) For all fuzzy subset µi of X, i ∈ I, f(
⋃
i∈I µi) =

⋃
i∈I f(µi) and so

µ1 ⊆ µ2 ⇒ f(µ1) ⊆ f(µ2).
2
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(2) For all fuzzy subset θj of Y, j ∈ J , f−1(
⋃
j∈J θj) =

⋃
j∈J f

−1(θj), f
−1(

⋂
j∈J θj) =⋂

j∈J f
−1(θj) and therefore θ1 ⊆ θ2 ⇒ f−1(θ1) ⊆ f−1(θ2).

(3) µ ⊆ f−1(f(µ)). In particular, if f is an injection, then µ = f−1(f(µ)), for
all fuzzy subset µ of X.

(4) f(f−1(θ)) ⊆ θ. In particular, if f is a surjection, then f(f−1(θ)) = θ, for
all fuzzy subset θ of Y .

(5) f(µ) ⊆ θ ⇔ µ ⊆ f−1(θ), for all fuzzy subsets µ and θ of X and Y respec-
tively.

Definition 2.4. [10] A fuzzy subset µ of a lattice L is said to be a fuzzy ideal of L,
if for all x, y ∈ L,

(i) µ(0) = 1,
(ii) µ(x ∨ y) ≥ µ(x) ∧ µ(y),
(iii) µ(x ∧ y) ≥ µ(x) ∨ µ(y).

In [10], Swamy and Raju observed that, a fuzzy subset µ of a lattice L is a fuzzy
ideal of L if and only if

µ(0) = 1 and µ(x ∨ y) = µ(x) ∧ µ(y) for all x, y ∈ L.

The set of all fuzzy ideals of L is denoted by FI(L).
Let µ be a fuzzy subset of a lattice L. The smallest fuzzy ideal of L containing µ

is called a fuzzy ideal of L induced by µ and denoted by (µ] and

(µ] =
⋂
{θ ∈ FI(L) : µ ⊆ θ}.

This definition can be stated as follows.

Theorem 2.5 ([4]). Let µ be a fuzzy subset of L. The fuzzy subset (µ] of L define
by

(µ](x) = Sup{α ∈ [0, 1] : x ∈ (µα]}, for all x ∈ L
is the fuzzy ideal induced by µ.

3. Relative fuzzy annihilators

In this section, we give the definition of relative fuzzy annihilator of a lattice L .
We also prove that the set of fuzzy annihilator ideals of L forms a complete Boolean
algebra.

Definition 3.1. Let µ be a nonempty fuzzy subset of L and θ be a fuzzy ideal of
L. The fuzzy annihilator 〈µ, θ〉 of µ relative to θ is defined:

〈µ, θ〉 = Sup{η : η ∈ [0, 1]L, η ∧ µ ⊆ θ}.

Lemma 3.2. For any two fuzzy subsets µ and θ of a distributive lattice L, we have

(µ ∧ θ] = (µ] ∧ (θ].

Proof. Let µ and θ be fuzzy subsets of L. We need to show (µ ∧ θ] = (µ] ∧ (θ].
We know that (µ ∧ θ] is the smallest fuzzy ideal containing µ ∧ θ. Clearly we have
that µ ∧ θ ⊆ (µ] ∧ (θ]. Since (µ] ∧ (θ] is a fuzzy ideal containing µ ∧ θ, we get
(µ ∧ θ] ⊆ (µ] ∧ (θ]. Now we proceed to show (µ] ∧ (θ] ⊆ (µ ∧ θ]. For any x ∈ L, the
value of the fuzzy ideal generated by a fuzzy subset µ is

(µ](x) = Sup{t ∈ [0, 1] : x ∈ (µt]}.
3
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In a distributive lattice L, for any subsets A and B of L, we have (A∧B] = (A]∧(B],
where A ∧B = {a ∧ b : a ∈ A, b ∈ B}.
Since (µ] and (θ] are fuzzy ideals, we have (µ] ∧ (θ] = (µ] ∩ (θ]. Now,

((µ] ∧ (θ])(x) = (µ](x) ∧ (θ](x)

= Sup{t1 ∈ [0, 1] : x ∈ (µt1 ]} ∧ Sup{t2 ∈ [0, 1] : x ∈ (θt2 ]}
= Sup{t1 ∧ t2 : x ∈ (µt1 ], x ∈ (θt2 ]}
≤ Sup{t : x ∈ (µt] ∧ (θt]}
≤ Sup{t : x ∈ ((µ ∧ θ)t]} Since µt ∧ θt ⊆ (µ ∧ θ)t
= (µ ∧ θ](x)

Thus (µ] ∧ (θ] ⊆ (µ ∧ θ]. So (µ] ∧ (θ] = (µ ∧ θ]. �

Now we prove the following lemma.

Lemma 3.3. Let µ be a nonempty fuzzy subset of L and θ be a fuzzy ideal of L.
Then

〈µ, θ〉 = Sup{η : η ∈ FI(L), η ∧ µ ⊆ θ}.

Proof. Clearly, Sup{η : η ∈ FI(L), η ∧ µ ⊆ θ} ≤ Sup{δ : δ ∈ [0, 1]L, δ ∧ µ ⊆ θ}.
Again,

〈µ, θ〉(x) = Sup{η(x) : η ∈ [0, 1]L, η ∧ µ ⊆ θ}
≤ Sup{(η](x) : (η] ∈ FI(L), (η] ∧ µ ⊆ θ}, since (η ∧ µ] = (η] ∧ (µ].

Thus 〈µ, θ〉 ⊆ Sup{η : η ∈ FI(L), η ∧ µ ⊆ θ}. So

〈µ, θ〉 = Sup{η : η ∈ FI(L), η ∧ µ ⊆ θ}.

�

Theorem 3.4. Let µ be a nonempty fuzzy subset of L and θ be a fuzzy ideal of L.
Then 〈µ, θ〉 is a fuzzy ideal of L.

Proof. Let µ be a nonempty fuzzy subset of L and θ be a fuzzy ideal of L. Since
θ ∧ µ ⊆ θ and θ(0) = 1, we get

〈µ, θ〉(0) = Sup{η(0) : η ∈ FI(L), η ∧ µ ⊆ θ} ≥ θ(0) = 1.

Again for any x, y ∈ L,
〈µ, θ〉(x) ∧ 〈µ, θ〉(y)

= Sup{η(x) : η ∈ FI(L), η ∧ µ ⊆ θ} ∧ Sup{σ(y) : σ ∈ FI(L), σ ∧ µ ⊆ θ}
= Sup{η(x) ∧ σ(y) : η, σ ∈ FI(L), η ∧ µ ⊆ θ, σ ∧ µ ⊆ θ}
≤ Sup{(η ∨ σ)(x) ∧ (η ∨ σ)(y) : η, σ ∈ FI(L), η ∧ µ ⊆ θ, σ ∧ µ ⊆ θ}.
For each η, σ ∈ FI(L) such that η ∧ µ ⊆ θ and σ ∧ µ ⊆ θ, η ∨ σ ∈ FI(L) and

(η ∨ σ) ∧ µ ⊆ θ. Then

〈µ, θ〉(x) ∧ 〈µ, θ〉(y) ≤ Sup{λ(x) ∧ λ(y) : λ ∈ FI(L), λ ∧ µ ⊆ θ}
= Sup{λ(x ∨ y) : λ ∈ FI(L), λ ∧ µ ⊆ θ}
= 〈µ, θ〉(x ∨ y).

Thus, 〈µ, θ〉(x ∨ y) ≥ 〈µ, θ〉(x) ∧ 〈µ, θ〉(y).
4
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Now we show 〈µ, θ〉(x) ≤ 〈µ, θ〉(x ∧ y) and 〈µ, θ〉(y) ≤ 〈µ, θ〉(x ∧ y).

〈µ, θ〉(x) = Sup{η(x) : η ∈ FI(L), η ∧ µ ⊆ θ}
≤ Sup{η(x ∧ y) : η ∈ FI(L), η ∧ µ ⊆ θ}
= 〈µ, θ〉(x ∧ y)

Similarly, 〈µ, θ〉(y) ≤ 〈µ, θ〉(x ∧ y). So 〈µ, θ〉(x ∧ y) ≥ 〈µ, θ〉(x) ∨ 〈µ, θ〉(y). Hence
〈µ, θ〉 is a fuzzy ideal of L. �

Example 3.5. Consider the distributive lattice L = {0, a, b, 1} whose Hasse diagram
is given below.

A fuzzy subset θ of L defined by θ(0) = 1, θ(a) = 1
5 , θ(b) = 1

3 , θ(1) = 1
5 is a

fuzzy ideal. Let µ be a fuzzy subset of L defined as: µ(0) = 1
4 , µ(a) = 1

7 , µ(b) =
1
7 , µ(1) = 1

4 . Next we can easily find the value of 〈µ, θ〉(x) for each x ∈ L. For

any η ∈ [0, 1]L with η ∧ µ ⊆ θ, we can determine the value of η(x). Then we have
〈µ, θ〉(a) = 〈µ, θ〉(1) = 1

5 , 〈µ, θ〉(0) = 〈µ, θ〉(b) = 1. Thus, 〈µ, θ〉 is a fuzzy ideal of L.

The characteristics function of any set A is defined as:

χA(x) =

{
1 , if x ∈ A
0 , if x /∈ A

Lemma 3.6. Let η and δ be fuzzy subsets and µ, θ and λ fuzzy ideals of L. Then

(1) 〈η, µ〉 = χL ⇔ η ⊆ µ,
(2) θ ⊆ 〈η, θ〉,
(3) η ⊆ δ ⇒ 〈δ, µ〉 ⊆ 〈η, µ〉,
(4) µ ⊆ θ ⇒ 〈δ, µ〉 ⊆ 〈δ, θ〉,
(5) 〈η, µ ∩ θ〉 = 〈η, µ〉 ∩ 〈η, θ〉,
(6) 〈(η], µ〉 = 〈η, µ〉,
(7) 〈η ∪ δ, µ〉 = 〈η, µ〉 ∩ 〈δ, µ〉,
(8) 〈µ ∨ θ, λ〉 = 〈µ, λ〉 ∩ 〈θ, λ〉,
(9) 〈µ, θ〉 = 〈µ ∨ θ, θ〉 = 〈µ, µ ∧ θ〉,

(10) (η] ∩ θ ⊆ µ⇒ θ ⊆ 〈η, µ〉.

Proof. Let η and δ be fuzzy subsets and µ, θ and λ fuzzy ideals of L.
(1) Let 〈η, µ〉 = χL. We need to show η ⊆ µ. Suppose not. Then there is

x ∈ L such that η(x) > µ(x). This implies that γ(x) ≤ µ(x), for each γ such that
γ ∧ η ⊆ µ. Thus µ(x) is an upper bound of {γ(x) : γ ∧ η ⊆ µ}. Which implies
1 = Sup{γ(x) : γ ∧ η ⊆ µ} ≤ µ(x). So µ(x) ≥ η(x) which is a contradiction. Hence
η ⊆ µ.

5
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Conversely, assume that η ⊆ µ. Then clearly, χL ∧ η ⊆ η. This implies that
χL ∧ η ⊆ µ. Thus 〈η, µ〉 = χL.

The proof of (2),(3) and (4) is straightforward.
(5) By (4), we have 〈η, µ ∩ θ〉 ⊆ 〈η, µ〉 ∩ 〈η, θ〉. On the other hand,

〈η, µ〉 ∩ 〈η, θ〉
= Sup{γ1 : γ1 ∈ FI(L), γ1 ∧ η ⊆ µ} ∧ Sup{γ2 : γ2 ∈ FI(L), γ2 ∧ η ⊆ θ}
= Sup{γ1 ∧ γ2 : γ1, γ2 ∈ FI(L), γ1 ∧ η ⊆ µ, γ2 ∧ η ⊆ θ}.

Since γ1 ∧ η ⊆ µ and γ2 ∧ η ⊆ θ, we can find a fuzzy ideal γ of L contained in γ1

and γ2 such that γ ∧ η ⊆ µ and γ ∧ η ⊆ θ. Based on this fact, we have that

〈η, µ〉 ∩ 〈η, θ〉 ≤ Sup{γ : γ ∈ FI(L), γ ∧ η ⊆ µ ∩ θ} = 〈η, µ ∩ θ〉.
Then 〈η, µ〉 ∩ 〈η, θ〉 = 〈η, µ ∩ θ〉.

(6) Since (γ ∧ η] = (γ] ∧ (η] = γ ∧ (η], for every γ ∈ FI(L), we have

〈η, µ〉 = Sup{γ : γ ∈ FI(L), γ ∧ η ⊆ µ} = Sup{γ : γ ∧ (η] ⊆ µ} = 〈(η], µ〉.
Then 〈η, µ〉 = 〈(η], µ〉.

(7) Clearly we have that 〈η ∪ δ, µ〉 ⊆ 〈η, µ〉 ∩ 〈δ, µ〉. On the other hand,

〈η, µ〉 ∩ 〈δ, µ〉 = 〈(η], µ〉 ∩ 〈(δ], µ〉
= Sup{γ1 : γ1 ∈ FI(L), γ1 ∧ (η] ⊆ µ}
∧ Sup{γ2 : γ2 ∈ FI(L), γ2 ∧ (δ] ⊆ µ}

= Sup{γ1 ∧ γ2 : γ1, γ2 ∈ FI(L), γ1 ∧ (η] ⊆ µ, γ2 ∧ (δ] ⊆ µ}.
Since γ1 ∧ (η] ⊆ µ and γ2 ∧ (δ] ⊆ µ, we can find a fuzzy ideal γ of L contained in γ1

and γ2 such that γ ∧ (η] ⊆ µ and γ ∧ (δ] ⊆ µ. This implies that (γ ∧ ((η]∨ (δ])) ⊆ µ.
This shows that

〈η, µ〉 ∩ 〈δ, µ〉 ≤ Sup{γ : γ ∧ ((η] ∨ (δ]) ⊆ µ}
≤ Sup{γ : γ ∧ (η ∪ δ) ⊆ µ}
= 〈η ∪ δ, µ〉.

Using property (6), we can simply prove the remaining properties. �

Let µ be a nonempty fuzzy subset of L. Since {0} is an ideal of L, 〈µ, χ{0}〉 is a
fuzzy ideal of L. Let us denote 〈µ, χ{0}〉 by µ∗. Then µ∗ is a fuzzy annihilator of µ
relative to χ{0}. Thus

µ∗ = Sup{η : η ∈ [0, 1]L, η ∧ µ ⊆ χ{0}}.
The following lemmas can be verified easily.

Lemma 3.7. Let µ be a nonempty fuzzy subset of L. Then

(1) χ{0} ⊆ µ∗,
(2) µ ∧ µ∗ ⊆ χ{0},
(3) µ ∧ µ∗ = χ{0}, whenever µ(0) = 1,
(4) µ∗ ∧ µ∗∗ = χ{0}.

Lemma 3.8. Let µ and θ be nonempty fuzzy subsets of L. Then

(1) µ ⊆ θ ⇒ θ∗ ⊆ µ∗,
(2) θ ∧ µ ⊆ χ{0} ⇔ θ ⊆ µ∗,
(3) θ ∧ µ = χ{0} ⇔ θ ⊆ µ∗, whenever µ(0) = 1 = θ(0),

6
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(4) µ ⊆ µ∗∗,
(5) µ∗ = µ∗∗∗.

Lemma 3.9. Let µ and θ be fuzzy ideals of L. Then

(1) (χ{0})
∗ = χL,

(2) (χL)∗ = χ{0},
(3) (µ ∨ θ)∗ = µ∗ ∩ θ∗,
(4) (µ ∨ µ∗)∗ = χ{0}.

Lemma 3.10. If µi ∈ [0, 1]L for every i ∈ I, then (
⋃
i∈I µi)

∗ =
⋂
i∈I µ

∗
i .

Proof. Let {µi : i ∈ I} be family of fuzzy subsets of L. Since µi ⊆ (
⋃
i∈I µi) for each

i, (
⋃
i∈I µi)

∗ ⊆ µ∗i . Then (
⋃
i∈I µi)

∗ ⊆
⋂
i∈I µ

∗
i . Again,

(
⋂
i∈I

µ∗i ) ∧ (
⋃
j∈I

µj) = (
∧
i∈I

µ∗i ) ∧ (
∨
j∈I

µj)

=
∨
j∈I

((
∧
i∈I

µ∗i ) ∧ µj))

≤
∨
j∈I

((µ∗j ∧ µj))

≤
∨
j∈I

(χ{0}).

= χ{0}

Thus (
⋂
i∈I µ

∗
i ) ⊆ (

⋃
i∈I µi)

∗. So (
⋂
i∈I µ

∗
i ) = (

⋃
i∈I µi)

∗. �

Now we give the definition of fuzzy annihilator ideal and prove that the set of all
fuzzy annihilator ideals is a complete Boolean algebra.

Definition 3.11. A fuzzy ideal µ of L is called a fuzzy annihilator ideal, if µ = θ∗,
for some nonempty fuzzy subset θ of L, or equivalently, µ = µ∗∗.

We denote the class of all fuzzy annihilator ideals of L by FAI(L).

Example 3.12. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c
0 0 a b c
a a a b b
b b b b b
c c b b c

∧ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then clearly (L,∧,∨) is a distributive lattice with least element 0. Now define a
fuzzy subset µ of L as follows: µ(0) = 1 = µ(a) and µ(b) = µ(c) = 0. Thus, µ is a
fuzzy ideal of L and µ = µ∗∗. So µ is a fuzzy annihilator ideal of L.

Lemma 3.13. Let µ, θ ∈ FAI(L). Then

(1) µ ∩ θ = (µ∗ ∨ θ∗)∗,
(2) µ ∩ θ = (µ ∩ θ)∗∗.

7
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The result (2) of the above lemma can be generalized as given in the following.
If {µi : i ∈ ∆} is a family of fuzzy annihilator ideals of L, then

(
⋂
i∈∆ µi)

∗∗ =
⋂
i∈∆ µi.

Theorem 3.14. The set FAI(L) of all fuzzy annihilator ideals of L forms a com-
plete Boolean algebra.

Proof. For µ, θ ∈ FAI(L), define µ ∧ θ = µ ∩ θ and µ∨θ = (µ∗ ∩ θ∗)∗. Then
clearly, µ ∩ θ, µ∨θ ∈ FAI(L). It can be easily observed that 〈FAI(L),∩,∨〉 is a
lattice. Since (χ{0})

∗ = χL and (χL)∗ = χ{0}, then χ{0} and χL are the least and
the greatest elements of FAI(L) respectively. Thus, 〈FAI(L),∩,∨〉 is a bounded
lattice.

Let µ ∈ FAI(L). Then µ∗ ∈ FAI(L) and µ ∩ µ∗ = χ{0}, µ∨µ∗ = χL. Thus µ∗

is a complement of µ.
Let µ, θ, η ∈ FAI(L). We prove that µ∨(θ ∩ η) = (µ∨θ) ∩ (µ∨η). We first

prove that (µ∨θ) ∩ η ⊆ µ∨(θ ∩ η). We have µ ∩ η ∩ (µ∗ ∩ (θ ∩ η)∗) = χ{0}, so that
η ∩ (µ∗ ∩ (θ ∩ η)∗) ⊆ µ∗. Similarly, θ ∩ η ∩ (µ∗ ∩ (θ ∩ η)∗) ⊆ χ{0} implies that
η ∩ (µ∗ ∩ (θ ∩ η)∗) ⊆ θ∗. Then η ∩ (µ∗ ∩ (θ ∩ η)∗) ⊆ µ∗ ∩ θ∗. Thus

η ∩ (µ∗ ∩ (θ ∩ η)∗) ∩ (µ∗ ∩ θ∗)∗ = χ{0}.

That is, (µ∗∩(θ∩η)∗)∩(η∩(µ∗∩θ∗)∗) = χ{0}. So (µ∗∩(θ∩η)∗) ⊆ (η∩(µ∗∩θ∗)∗)∗.
Hence (µ∨θ) ∩ η ⊆ µ∨(θ ∩ η) and so FAI(L) is a distributive lattice. Therefore
〈FAI(L),∩,∨〉 is a Boolean algebra.

Next we prove the completeness. Let {µi : i ∈ ∆} be a family of FAI(L). Then
(
⋂
i∈∆ µi)

∗∗ =
⋂
i∈∆ µi. Thus 〈FAI(L),∧,∨, ∗, χ{0}, χL〉 is a complete Boolean

algebra. �

4. Fuzzy annihilator preserving homomorphism

In this section we study fuzzy annihilator preserving homomorphism. Through-
out this section L and L

′
denote distributive lattices with least elements 0 and 0

′

respectively and f : L −→ L
′

denotes a lattice homomorphism.

Lemma 4.1. If µ is any nonempty fuzzy subset of L and θ is a fuzzy ideal of L,
then f(〈µ, θ〉) ⊆ 〈f(µ), f(θ)〉. (In particular, if θ = χ{0} , then f(µ∗) ⊆ (f(µ))∗).

Proof.

f(〈µ, θ〉)(y) = Sup{〈µ, θ〉(x) : x ∈ f−1(y)}
= Sup{Sup{η(x) : η ∈ FI(L), η ∧ µ ⊆ θ} : x ∈ f−1(y)}}
= Sup{f(η)(y) : η ∧ µ ⊆ θ}
≤ Sup{λ(y) : λ ∈ FI(L

′
), λ ∧ f(µ) ⊆ f(θ)}

= 〈f(µ), f(θ)〉(y).

Then f(〈µ, θ〉) ⊆ 〈f(µ), f(θ)〉. �

Definition 4.2. For any nonempty fuzzy subset µ of L, f is said to be a fuzzy
annihilator preserving if f(µ∗) = (f(µ))∗.

8
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Theorem 4.3. If Kerf = {0} and f is onto, then f is a fuzzy annihilator preserv-
ing.

Proof. Let µ be a nonempty fuzzy subset of L. We have always f(µ∗) ⊆ (f(µ))∗.
Since Kerf = {0} and f is onto, f−1(χ{0′}) = χ{0} and θ = f(f−1(θ)), for all

θ ∈ [0, 1]L
′

. Let y ∈ L′
. Then

(f(µ))∗(y) = Sup{θ(y) : θ ∈ FI(L
′
), θ ∧ f(µ) ⊆ χ{0′}}

= Sup{θ(y) : f(f−1(θ)) ∧ f(µ) ⊆ χ{0′}}

= Sup{θ(y) : f(f−1(θ) ∧ µ) ⊆ χ{0′}}

= Sup{θ(y) : f−1(θ) ∧ µ ⊆ f−1(χ{0′})}

= Sup{θ(f(x)) : f−1(θ) ∧ µ ⊆ χ{0}, f(x) = y}
≤ Sup{Sup{f−1(θ)(x) : f−1(θ) ∧ µ ⊆ χ{0}} : x ∈ f−1(y)}
≤ Sup{Sup{η(x) : η ∈ FI(L), η ∧ µ ⊆ χ{0}} : x ∈ f−1(y)}
= f(µ∗)(y).

Thus (f(µ))∗ ⊆ f(µ∗). So f preserves fuzzy annihilator. �

Theorem 4.4. If Kerf = {0}, then f−1 preserves fuzzy annihilator.

Proof. Let µ be a nonempty fuzzy subset of L
′

and x ∈ L. Then

f−1(µ∗)(x) = (µ∗)(f(x))

= Sup{θ(f(x)) : θ ∈ FI(L
′
), θ ∧ µ ⊆ χ{0′}}

≤ Sup{θ(f(x)) : f(f−1(θ)) ∧ f(f−1(µ)) ⊆ χ{0′}}

= Sup{f−1(θ)(x) : f−1(θ) ∧ f−1(µ) ⊆ χ{0}}
≤ Sup{η(x) : η ∈ FI(L), η ∧ f−1(µ) ⊆ χ{0}}
= (f−1(µ))∗(x).

Thus f−1(µ∗) ⊆ (f−1(µ))∗. Similarly, (f−1(µ))∗ ⊆ f−1(µ∗). So f−1(µ∗) = (f−1(µ))∗.
�

Theorem 4.5. Let f be a fuzzy annihilator preserving epimorphism and Kerf =
{0}. Then we have:

µ∗ = θ∗ ⇔ (f(µ))∗ = (f(θ))∗,

for any nonempty fuzzy subsets µ, θ of L.

Proof. Let µ and θ be two nonempty fuzzy subsets of L such that µ∗ = θ∗. Since f
is annihilator preserving, it gives (f(µ))∗ = (f(θ))∗.

Conversely, suppose that (f(µ))∗ = (f(θ))∗. We know that µ ⊆ f−1(f(µ)), for
each fuzzy subset µ of L. Let x ∈ L. Then µ∗(x) ≤ (f(µ))∗(f(x)) = (f(θ))∗(f(x)).
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This implies

µ∗(x) ≤ (f(θ))∗(f(x))

= Sup{η(f(x)) : η ∈ FI(L
′
), η ∧ f(θ) ⊆ χ{0′}}

= Sup{η(f(x)) : f(f−1(η)) ∧ f(θ) ⊆ χ{0′}}

= Sup{f−1(η)(x) : f−1(η) ∧ θ ⊆ χ{0}}
≤ Sup{λ(x) : λ ∈ FI(L), λ ∧ θ ⊆ χ{0}}
= θ∗(x).

Thus µ∗ ⊆ θ∗. Similarly, θ∗ ⊆ µ∗. So µ∗ = θ∗ �

The following theorem can be verified easily.

Theorem 4.6. (1) If f is fuzzy annihilator preserving and onto, then f(µ) is a

fuzzy annihilator ideal of L
′
, for every fuzzy annihilator ideal µ of L.

(2) If f−1 preserves annihilator, then f−1(µ) is a fuzzy annihilator ideal of L, for

every fuzzy annihilator ideal µ of L
′
.
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